当前位置:   article > 正文

FPGA实现图像处理之【直方图均衡-寄存器版】

FPGA实现图像处理之【直方图均衡-寄存器版】

FPGA实现直方图统计

一、图像直方图统计原理

直方图的全称为灰度直方图,是对图像每一灰度间隔内像素个数的统计。即对一张图片中每隔二灰度值的像素数量做统计,然后以直方图的形式展现出来。图下的亮暗分布在直方图中就可以一目了然,直方图在图像前端和后端处理中都有广泛的应用,比如图像的直方图均衡、图像自动曝光控制和图像特征提取等。

image-20240428214846205

二、基于寄存器(逻辑资源)的直方图统计系统框图

图片大小640x480,需要20bit的位宽来计像素的个数。i_img_vld为高时,输入图片数据i_img_data[7:0]有效,“256级灰度灰度值的像素计数”模块统计0~255中灰度级数的个数,“输入有效像素个数计数”模块用于计算i_mg_data已经输入了几个,“256级直方图统计结果分时输出”模块是输入256个灰度级的统计结果,需要256个时钟周期,每个周期输出一级灰度级的结果。

image-20240428220751855

三、代码实现

这个代码简单而且暴力,主要是易于理解,占用较多的逻辑资源。因为这种统计方法,对于i_image_data来说有256个扇出,所以系统时钟频率不会跑的很高,时序很难收敛


`timescale 1ns/1ps

module m_histogram_reg#(
	parameter P_IMAGE_WIDTH=640,
	parameter P_IMAGE_HIGHT=480

)(
	input i_clk,
	input i_rst_n,
	input i_image_vld,
	input [7:0] i_image_data,
	output reg o_result_rdy,
	output reg [19:0] o_result_data
    );
	
localparam P_IMAGE_SIZE = P_IMAGE_HIGHT*P_IMAGE_WIDTH;
reg [19:0] r_hist_cnt[255:0];//每个灰度值统计的计数器

//256个灰度值的直方图统计
always@(posedge i_clk)begin
	if(!i_rst_n)begin
		r_hist_cnt[0] <= 20'd0;
		r_hist_cnt[1] <= 20'd0;
		r_hist_cnt[2] <= 20'd0;
		r_hist_cnt[3] <= 20'd0;
		r_hist_cnt[4] <= 20'd0;
		r_hist_cnt[5] <= 20'd0;
		r_hist_cnt[6] <= 20'd0;
		r_hist_cnt[7] <= 20'd0;
		r_hist_cnt[8] <= 20'd0;
		r_hist_cnt[9] <= 20'd0;
		r_hist_cnt[10] <= 20'd0;
		r_hist_cnt[11] <= 20'd0;
		r_hist_cnt[12] <= 20'd0;
		r_hist_cnt[13] <= 20'd0;
		r_hist_cnt[14] <= 20'd0;
		r_hist_cnt[15] <= 20'd0;
		r_hist_cnt[16] <= 20'd0;
		r_hist_cnt[17] <= 20'd0;
		r_hist_cnt[18] <= 20'd0;
		r_hist_cnt[19] <= 20'd0;
		r_hist_cnt[20] <= 20'd0;
		r_hist_cnt[21] <= 20'd0;
		r_hist_cnt[22] <= 20'd0;
		r_hist_cnt[23] <= 20'd0;
		r_hist_cnt[24] <= 20'd0;
		r_hist_cnt[25] <= 20'd0;
		r_hist_cnt[26] <= 20'd0;
		r_hist_cnt[27] <= 20'd0;
		r_hist_cnt[28] <= 20'd0;
		r_hist_cnt[29] <= 20'd0;
		r_hist_cnt[30] <= 20'd0;
		r_hist_cnt[31] <= 20'd0;
		r_hist_cnt[32] <= 20'd0;
		r_hist_cnt[33] <= 20'd0;
		r_hist_cnt[34] <= 20'd0;
		r_hist_cnt[35] <= 20'd0;
		r_hist_cnt[36] <= 20'd0;
		r_hist_cnt[37] <= 20'd0;
		r_hist_cnt[38] <= 20'd0;
		r_hist_cnt[39] <= 20'd0;
		r_hist_cnt[40] <= 20'd0;
		r_hist_cnt[41] <= 20'd0;
		r_hist_cnt[42] <= 20'd0;
		r_hist_cnt[43] <= 20'd0;
		r_hist_cnt[44] <= 20'd0;
		r_hist_cnt[45] <= 20'd0;
		r_hist_cnt[46] <= 20'd0;
		r_hist_cnt[47] <= 20'd0;
		r_hist_cnt[48] <= 20'd0;
		r_hist_cnt[49] <= 20'd0;
		r_hist_cnt[50] <= 20'd0;
		r_hist_cnt[51] <= 20'd0;
		r_hist_cnt[52] <= 20'd0;
		r_hist_cnt[53] <= 20'd0;
		r_hist_cnt[54] <= 20'd0;
		r_hist_cnt[55] <= 20'd0;
		r_hist_cnt[56] <= 20'd0;
		r_hist_cnt[57] <= 20'd0;
		r_hist_cnt[58] <= 20'd0;
		r_hist_cnt[59] <= 20'd0;
		r_hist_cnt[60] <= 20'd0;
		r_hist_cnt[61] <= 20'd0;
		r_hist_cnt[62] <= 20'd0;
		r_hist_cnt[63] <= 20'd0;
		r_hist_cnt[64] <= 20'd0;
		r_hist_cnt[65] <= 20'd0;
		r_hist_cnt[66] <= 20'd0;
		r_hist_cnt[67] <= 20'd0;
		r_hist_cnt[68] <= 20'd0;
		r_hist_cnt[69] <= 20'd0;
		r_hist_cnt[70] <= 20'd0;
		r_hist_cnt[71] <= 20'd0;
		r_hist_cnt[72] <= 20'd0;
		r_hist_cnt[73] <= 20'd0;
		r_hist_cnt[74] <= 20'd0;
		r_hist_cnt[75] <= 20'd0;
		r_hist_cnt[76] <= 20'd0;
		r_hist_cnt[77] <= 20'd0;
		r_hist_cnt[78] <= 20'd0;
		r_hist_cnt[79] <= 20'd0;
		r_hist_cnt[80] <= 20'd0;
		r_hist_cnt[81] <= 20'd0;
		r_hist_cnt[82] <= 20'd0;
		r_hist_cnt[83] <= 20'd0;
		r_hist_cnt[84] <= 20'd0;
		r_hist_cnt[85] <= 20'd0;
		r_hist_cnt[86] <= 20'd0;
		r_hist_cnt[87] <= 20'd0;
		r_hist_cnt[88] <= 20'd0;
		r_hist_cnt[89] <= 20'd0;
		r_hist_cnt[90] <= 20'd0;
		r_hist_cnt[91] <= 20'd0;
		r_hist_cnt[92] <= 20'd0;
		r_hist_cnt[93] <= 20'd0;
		r_hist_cnt[94] <= 20'd0;
		r_hist_cnt[95] <= 20'd0;
		r_hist_cnt[96] <= 20'd0;
		r_hist_cnt[97] <= 20'd0;
		r_hist_cnt[98] <= 20'd0;
		r_hist_cnt[99] <= 20'd0;
		r_hist_cnt[100] <= 20'd0;
		r_hist_cnt[101] <= 20'd0;
		r_hist_cnt[102] <= 20'd0;
		r_hist_cnt[103] <= 20'd0;
		r_hist_cnt[104] <= 20'd0;
		r_hist_cnt[105] <= 20'd0;
		r_hist_cnt[106] <= 20'd0;
		r_hist_cnt[107] <= 20'd0;
		r_hist_cnt[108] <= 20'd0;
		r_hist_cnt[109] <= 20'd0;
		r_hist_cnt[110] <= 20'd0;
		r_hist_cnt[111] <= 20'd0;
		r_hist_cnt[112] <= 20'd0;
		r_hist_cnt[113] <= 20'd0;
		r_hist_cnt[114] <= 20'd0;
		r_hist_cnt[115] <= 20'd0;
		r_hist_cnt[116] <= 20'd0;
		r_hist_cnt[117] <= 20'd0;
		r_hist_cnt[118] <= 20'd0;
		r_hist_cnt[119] <= 20'd0;
		r_hist_cnt[120] <= 20'd0;
		r_hist_cnt[121] <= 20'd0;
		r_hist_cnt[122] <= 20'd0;
		r_hist_cnt[123] <= 20'd0;
		r_hist_cnt[124] <= 20'd0;
		r_hist_cnt[125] <= 20'd0;
		r_hist_cnt[126] <= 20'd0;
		r_hist_cnt[127] <= 20'd0;
		r_hist_cnt[128] <= 20'd0;
		r_hist_cnt[129] <= 20'd0;
		r_hist_cnt[130] <= 20'd0;
		r_hist_cnt[131] <= 20'd0;
		r_hist_cnt[132] <= 20'd0;
		r_hist_cnt[133] <= 20'd0;
		r_hist_cnt[134] <= 20'd0;
		r_hist_cnt[135] <= 20'd0;
		r_hist_cnt[136] <= 20'd0;
		r_hist_cnt[137] <= 20'd0;
		r_hist_cnt[138] <= 20'd0;
		r_hist_cnt[139] <= 20'd0;
		r_hist_cnt[140] <= 20'd0;
		r_hist_cnt[141] <= 20'd0;
		r_hist_cnt[142] <= 20'd0;
		r_hist_cnt[143] <= 20'd0;
		r_hist_cnt[144] <= 20'd0;
		r_hist_cnt[145] <= 20'd0;
		r_hist_cnt[146] <= 20'd0;
		r_hist_cnt[147] <= 20'd0;
		r_hist_cnt[148] <= 20'd0;
		r_hist_cnt[149] <= 20'd0;
		r_hist_cnt[150] <= 20'd0;
		r_hist_cnt[151] <= 20'd0;
		r_hist_cnt[152] <= 20'd0;
		r_hist_cnt[153] <= 20'd0;
		r_hist_cnt[154] <= 20'd0;
		r_hist_cnt[155] <= 20'd0;
		r_hist_cnt[156] <= 20'd0;
		r_hist_cnt[157] <= 20'd0;
		r_hist_cnt[158] <= 20'd0;
		r_hist_cnt[159] <= 20'd0;
		r_hist_cnt[160] <= 20'd0;
		r_hist_cnt[161] <= 20'd0;
		r_hist_cnt[162] <= 20'd0;
		r_hist_cnt[163] <= 20'd0;
		r_hist_cnt[164] <= 20'd0;
		r_hist_cnt[165] <= 20'd0;
		r_hist_cnt[166] <= 20'd0;
		r_hist_cnt[167] <= 20'd0;
		r_hist_cnt[168] <= 20'd0;
		r_hist_cnt[169] <= 20'd0;
		r_hist_cnt[170] <= 20'd0;
		r_hist_cnt[171] <= 20'd0;
		r_hist_cnt[172] <= 20'd0;
		r_hist_cnt[173] <= 20'd0;
		r_hist_cnt[174] <= 20'd0;
		r_hist_cnt[175] <= 20'd0;
		r_hist_cnt[176] <= 20'd0;
		r_hist_cnt[177] <= 20'd0;
		r_hist_cnt[178] <= 20'd0;
		r_hist_cnt[179] <= 20'd0;
		r_hist_cnt[180] <= 20'd0;
		r_hist_cnt[181] <= 20'd0;
		r_hist_cnt[182] <= 20'd0;
		r_hist_cnt[183] <= 20'd0;
		r_hist_cnt[184] <= 20'd0;
		r_hist_cnt[185] <= 20'd0;
		r_hist_cnt[186] <= 20'd0;
		r_hist_cnt[187] <= 20'd0;
		r_hist_cnt[188] <= 20'd0;
		r_hist_cnt[189] <= 20'd0;
		r_hist_cnt[190] <= 20'd0;
		r_hist_cnt[191] <= 20'd0;
		r_hist_cnt[192] <= 20'd0;
		r_hist_cnt[193] <= 20'd0;
		r_hist_cnt[194] <= 20'd0;
		r_hist_cnt[195] <= 20'd0;
		r_hist_cnt[196] <= 20'd0;
		r_hist_cnt[197] <= 20'd0;
		r_hist_cnt[198] <= 20'd0;
		r_hist_cnt[199] <= 20'd0;
		r_hist_cnt[200] <= 20'd0;
		r_hist_cnt[201] <= 20'd0;
		r_hist_cnt[202] <= 20'd0;
		r_hist_cnt[203] <= 20'd0;
		r_hist_cnt[204] <= 20'd0;
		r_hist_cnt[205] <= 20'd0;
		r_hist_cnt[206] <= 20'd0;
		r_hist_cnt[207] <= 20'd0;
		r_hist_cnt[208] <= 20'd0;
		r_hist_cnt[209] <= 20'd0;
		r_hist_cnt[210] <= 20'd0;
		r_hist_cnt[211] <= 20'd0;
		r_hist_cnt[212] <= 20'd0;
		r_hist_cnt[213] <= 20'd0;
		r_hist_cnt[214] <= 20'd0;
		r_hist_cnt[215] <= 20'd0;
		r_hist_cnt[216] <= 20'd0;
		r_hist_cnt[217] <= 20'd0;
		r_hist_cnt[218] <= 20'd0;
		r_hist_cnt[219] <= 20'd0;
		r_hist_cnt[220] <= 20'd0;
		r_hist_cnt[221] <= 20'd0;
		r_hist_cnt[222] <= 20'd0;
		r_hist_cnt[223] <= 20'd0;
		r_hist_cnt[224] <= 20'd0;
		r_hist_cnt[225] <= 20'd0;
		r_hist_cnt[226] <= 20'd0;
		r_hist_cnt[227] <= 20'd0;
		r_hist_cnt[228] <= 20'd0;
		r_hist_cnt[229] <= 20'd0;
		r_hist_cnt[230] <= 20'd0;
		r_hist_cnt[231] <= 20'd0;
		r_hist_cnt[232] <= 20'd0;
		r_hist_cnt[233] <= 20'd0;
		r_hist_cnt[234] <= 20'd0;
		r_hist_cnt[235] <= 20'd0;
		r_hist_cnt[236] <= 20'd0;
		r_hist_cnt[237] <= 20'd0;
		r_hist_cnt[238] <= 20'd0;
		r_hist_cnt[239] <= 20'd0;
		r_hist_cnt[240] <= 20'd0;
		r_hist_cnt[241] <= 20'd0;
		r_hist_cnt[242] <= 20'd0;
		r_hist_cnt[243] <= 20'd0;
		r_hist_cnt[244] <= 20'd0;
		r_hist_cnt[245] <= 20'd0;
		r_hist_cnt[246] <= 20'd0;
		r_hist_cnt[247] <= 20'd0;
		r_hist_cnt[248] <= 20'd0;
		r_hist_cnt[249] <= 20'd0;
		r_hist_cnt[250] <= 20'd0;
		r_hist_cnt[251] <= 20'd0;
		r_hist_cnt[252] <= 20'd0;
		r_hist_cnt[253] <= 20'd0;
		r_hist_cnt[254] <= 20'd0;
		r_hist_cnt[255] <= 20'd0;
	end 
	else if(i_image_vld)begin
		case(i_image_data)
			8'd0:r_hist_cnt[0] <=r_hist_cnt[0] + 1;
			8'd1:r_hist_cnt[1] <=r_hist_cnt[1] + 1;
			8'd2:r_hist_cnt[2] <=r_hist_cnt[2] + 1;
			8'd3:r_hist_cnt[3] <=r_hist_cnt[3] + 1;
			8'd4:r_hist_cnt[4] <=r_hist_cnt[4] + 1;
			8'd5:r_hist_cnt[5] <=r_hist_cnt[5] + 1;
			8'd6:r_hist_cnt[6] <=r_hist_cnt[6] + 1;
			8'd7:r_hist_cnt[7] <=r_hist_cnt[7] + 1;
			8'd8:r_hist_cnt[8] <=r_hist_cnt[8] + 1;
			8'd9:r_hist_cnt[9] <=r_hist_cnt[9] + 1;
			8'd10:r_hist_cnt[10] <=r_hist_cnt[10] + 1;
			8'd11:r_hist_cnt[11] <=r_hist_cnt[11] + 1;
			8'd12:r_hist_cnt[12] <=r_hist_cnt[12] + 1;
			8'd13:r_hist_cnt[13] <=r_hist_cnt[13] + 1;
			8'd14:r_hist_cnt[14] <=r_hist_cnt[14] + 1;
			8'd15:r_hist_cnt[15] <=r_hist_cnt[15] + 1;
			8'd16:r_hist_cnt[16] <=r_hist_cnt[16] + 1;
			8'd17:r_hist_cnt[17] <=r_hist_cnt[17] + 1;
			8'd18:r_hist_cnt[18] <=r_hist_cnt[18] + 1;
			8'd19:r_hist_cnt[19] <=r_hist_cnt[19] + 1;
			8'd20:r_hist_cnt[20] <=r_hist_cnt[20] + 1;
			8'd21:r_hist_cnt[21] <=r_hist_cnt[21] + 1;
			8'd22:r_hist_cnt[22] <=r_hist_cnt[22] + 1;
			8'd23:r_hist_cnt[23] <=r_hist_cnt[23] + 1;
			8'd24:r_hist_cnt[24] <=r_hist_cnt[24] + 1;
			8'd25:r_hist_cnt[25] <=r_hist_cnt[25] + 1;
			8'd26:r_hist_cnt[26] <=r_hist_cnt[26] + 1;
			8'd27:r_hist_cnt[27] <=r_hist_cnt[27] + 1;
			8'd28:r_hist_cnt[28] <=r_hist_cnt[28] + 1;
			8'd29:r_hist_cnt[29] <=r_hist_cnt[29] + 1;
			8'd30:r_hist_cnt[30] <=r_hist_cnt[30] + 1;
			8'd31:r_hist_cnt[31] <=r_hist_cnt[31] + 1;
			8'd32:r_hist_cnt[32] <=r_hist_cnt[32] + 1;
			8'd33:r_hist_cnt[33] <=r_hist_cnt[33] + 1;
			8'd34:r_hist_cnt[34] <=r_hist_cnt[34] + 1;
			8'd35:r_hist_cnt[35] <=r_hist_cnt[35] + 1;
			8'd36:r_hist_cnt[36] <=r_hist_cnt[36] + 1;
			8'd37:r_hist_cnt[37] <=r_hist_cnt[37] + 1;
			8'd38:r_hist_cnt[38] <=r_hist_cnt[38] + 1;
			8'd39:r_hist_cnt[39] <=r_hist_cnt[39] + 1;
			8'd40:r_hist_cnt[40] <=r_hist_cnt[40] + 1;
			8'd41:r_hist_cnt[41] <=r_hist_cnt[41] + 1;
			8'd42:r_hist_cnt[42] <=r_hist_cnt[42] + 1;
			8'd43:r_hist_cnt[43] <=r_hist_cnt[43] + 1;
			8'd44:r_hist_cnt[44] <=r_hist_cnt[44] + 1;
			8'd45:r_hist_cnt[45] <=r_hist_cnt[45] + 1;
			8'd46:r_hist_cnt[46] <=r_hist_cnt[46] + 1;
			8'd47:r_hist_cnt[47] <=r_hist_cnt[47] + 1;
			8'd48:r_hist_cnt[48] <=r_hist_cnt[48] + 1;
			8'd49:r_hist_cnt[49] <=r_hist_cnt[49] + 1;
			8'd50:r_hist_cnt[50] <=r_hist_cnt[50] + 1;
			8'd51:r_hist_cnt[51] <=r_hist_cnt[51] + 1;
			8'd52:r_hist_cnt[52] <=r_hist_cnt[52] + 1;
			8'd53:r_hist_cnt[53] <=r_hist_cnt[53] + 1;
			8'd54:r_hist_cnt[54] <=r_hist_cnt[54] + 1;
			8'd55:r_hist_cnt[55] <=r_hist_cnt[55] + 1;
			8'd56:r_hist_cnt[56] <=r_hist_cnt[56] + 1;
			8'd57:r_hist_cnt[57] <=r_hist_cnt[57] + 1;
			8'd58:r_hist_cnt[58] <=r_hist_cnt[58] + 1;
			8'd59:r_hist_cnt[59] <=r_hist_cnt[59] + 1;
			8'd60:r_hist_cnt[60] <=r_hist_cnt[60] + 1;
			8'd61:r_hist_cnt[61] <=r_hist_cnt[61] + 1;
			8'd62:r_hist_cnt[62] <=r_hist_cnt[62] + 1;
			8'd63:r_hist_cnt[63] <=r_hist_cnt[63] + 1;
			8'd64:r_hist_cnt[64] <=r_hist_cnt[64] + 1;
			8'd65:r_hist_cnt[65] <=r_hist_cnt[65] + 1;
			8'd66:r_hist_cnt[66] <=r_hist_cnt[66] + 1;
			8'd67:r_hist_cnt[67] <=r_hist_cnt[67] + 1;
			8'd68:r_hist_cnt[68] <=r_hist_cnt[68] + 1;
			8'd69:r_hist_cnt[69] <=r_hist_cnt[69] + 1;
			8'd70:r_hist_cnt[70] <=r_hist_cnt[70] + 1;
			8'd71:r_hist_cnt[71] <=r_hist_cnt[71] + 1;
			8'd72:r_hist_cnt[72] <=r_hist_cnt[72] + 1;
			8'd73:r_hist_cnt[73] <=r_hist_cnt[73] + 1;
			8'd74:r_hist_cnt[74] <=r_hist_cnt[74] + 1;
			8'd75:r_hist_cnt[75] <=r_hist_cnt[75] + 1;
			8'd76:r_hist_cnt[76] <=r_hist_cnt[76] + 1;
			8'd77:r_hist_cnt[77] <=r_hist_cnt[77] + 1;
			8'd78:r_hist_cnt[78] <=r_hist_cnt[78] + 1;
			8'd79:r_hist_cnt[79] <=r_hist_cnt[79] + 1;
			8'd80:r_hist_cnt[80] <=r_hist_cnt[80] + 1;
			8'd81:r_hist_cnt[81] <=r_hist_cnt[81] + 1;
			8'd82:r_hist_cnt[82] <=r_hist_cnt[82] + 1;
			8'd83:r_hist_cnt[83] <=r_hist_cnt[83] + 1;
			8'd84:r_hist_cnt[84] <=r_hist_cnt[84] + 1;
			8'd85:r_hist_cnt[85] <=r_hist_cnt[85] + 1;
			8'd86:r_hist_cnt[86] <=r_hist_cnt[86] + 1;
			8'd87:r_hist_cnt[87] <=r_hist_cnt[87] + 1;
			8'd88:r_hist_cnt[88] <=r_hist_cnt[88] + 1;
			8'd89:r_hist_cnt[89] <=r_hist_cnt[89] + 1;
			8'd90:r_hist_cnt[90] <=r_hist_cnt[90] + 1;
			8'd91:r_hist_cnt[91] <=r_hist_cnt[91] + 1;
			8'd92:r_hist_cnt[92] <=r_hist_cnt[92] + 1;
			8'd93:r_hist_cnt[93] <=r_hist_cnt[93] + 1;
			8'd94:r_hist_cnt[94] <=r_hist_cnt[94] + 1;
			8'd95:r_hist_cnt[95] <=r_hist_cnt[95] + 1;
			8'd96:r_hist_cnt[96] <=r_hist_cnt[96] + 1;
			8'd97:r_hist_cnt[97] <=r_hist_cnt[97] + 1;
			8'd98:r_hist_cnt[98] <=r_hist_cnt[98] + 1;
			8'd99:r_hist_cnt[99] <=r_hist_cnt[99] + 1;
			8'd100:r_hist_cnt[100] <=r_hist_cnt[100] + 1;
			8'd101:r_hist_cnt[101] <=r_hist_cnt[101] + 1;
			8'd102:r_hist_cnt[102] <=r_hist_cnt[102] + 1;
			8'd103:r_hist_cnt[103] <=r_hist_cnt[103] + 1;
			8'd104:r_hist_cnt[104] <=r_hist_cnt[104] + 1;
			8'd105:r_hist_cnt[105] <=r_hist_cnt[105] + 1;
			8'd106:r_hist_cnt[106] <=r_hist_cnt[106] + 1;
			8'd107:r_hist_cnt[107] <=r_hist_cnt[107] + 1;
			8'd108:r_hist_cnt[108] <=r_hist_cnt[108] + 1;
			8'd109:r_hist_cnt[109] <=r_hist_cnt[109] + 1;
			8'd110:r_hist_cnt[110] <=r_hist_cnt[110] + 1;
			8'd111:r_hist_cnt[111] <=r_hist_cnt[111] + 1;
			8'd112:r_hist_cnt[112] <=r_hist_cnt[112] + 1;
			8'd113:r_hist_cnt[113] <=r_hist_cnt[113] + 1;
			8'd114:r_hist_cnt[114] <=r_hist_cnt[114] + 1;
			8'd115:r_hist_cnt[115] <=r_hist_cnt[115] + 1;
			8'd116:r_hist_cnt[116] <=r_hist_cnt[116] + 1;
			8'd117:r_hist_cnt[117] <=r_hist_cnt[117] + 1;
			8'd118:r_hist_cnt[118] <=r_hist_cnt[118] + 1;
			8'd119:r_hist_cnt[119] <=r_hist_cnt[119] + 1;
			8'd120:r_hist_cnt[120] <=r_hist_cnt[120] + 1;
			8'd121:r_hist_cnt[121] <=r_hist_cnt[121] + 1;
			8'd122:r_hist_cnt[122] <=r_hist_cnt[122] + 1;
			8'd123:r_hist_cnt[123] <=r_hist_cnt[123] + 1;
			8'd124:r_hist_cnt[124] <=r_hist_cnt[124] + 1;
			8'd125:r_hist_cnt[125] <=r_hist_cnt[125] + 1;
			8'd126:r_hist_cnt[126] <=r_hist_cnt[126] + 1;
			8'd127:r_hist_cnt[127] <=r_hist_cnt[127] + 1;
			8'd128:r_hist_cnt[128] <=r_hist_cnt[128] + 1;
			8'd129:r_hist_cnt[129] <=r_hist_cnt[129] + 1;
			8'd130:r_hist_cnt[130] <=r_hist_cnt[130] + 1;
			8'd131:r_hist_cnt[131] <=r_hist_cnt[131] + 1;
			8'd132:r_hist_cnt[132] <=r_hist_cnt[132] + 1;
			8'd133:r_hist_cnt[133] <=r_hist_cnt[133] + 1;
			8'd134:r_hist_cnt[134] <=r_hist_cnt[134] + 1;
			8'd135:r_hist_cnt[135] <=r_hist_cnt[135] + 1;
			8'd136:r_hist_cnt[136] <=r_hist_cnt[136] + 1;
			8'd137:r_hist_cnt[137] <=r_hist_cnt[137] + 1;
			8'd138:r_hist_cnt[138] <=r_hist_cnt[138] + 1;
			8'd139:r_hist_cnt[139] <=r_hist_cnt[139] + 1;
			8'd140:r_hist_cnt[140] <=r_hist_cnt[140] + 1;
			8'd141:r_hist_cnt[141] <=r_hist_cnt[141] + 1;
			8'd142:r_hist_cnt[142] <=r_hist_cnt[142] + 1;
			8'd143:r_hist_cnt[143] <=r_hist_cnt[143] + 1;
			8'd144:r_hist_cnt[144] <=r_hist_cnt[144] + 1;
			8'd145:r_hist_cnt[145] <=r_hist_cnt[145] + 1;
			8'd146:r_hist_cnt[146] <=r_hist_cnt[146] + 1;
			8'd147:r_hist_cnt[147] <=r_hist_cnt[147] + 1;
			8'd148:r_hist_cnt[148] <=r_hist_cnt[148] + 1;
			8'd149:r_hist_cnt[149] <=r_hist_cnt[149] + 1;
			8'd150:r_hist_cnt[150] <=r_hist_cnt[150] + 1;
			8'd151:r_hist_cnt[151] <=r_hist_cnt[151] + 1;
			8'd152:r_hist_cnt[152] <=r_hist_cnt[152] + 1;
			8'd153:r_hist_cnt[153] <=r_hist_cnt[153] + 1;
			8'd154:r_hist_cnt[154] <=r_hist_cnt[154] + 1;
			8'd155:r_hist_cnt[155] <=r_hist_cnt[155] + 1;
			8'd156:r_hist_cnt[156] <=r_hist_cnt[156] + 1;
			8'd157:r_hist_cnt[157] <=r_hist_cnt[157] + 1;
			8'd158:r_hist_cnt[158] <=r_hist_cnt[158] + 1;
			8'd159:r_hist_cnt[159] <=r_hist_cnt[159] + 1;
			8'd160:r_hist_cnt[160] <=r_hist_cnt[160] + 1;
			8'd161:r_hist_cnt[161] <=r_hist_cnt[161] + 1;
			8'd162:r_hist_cnt[162] <=r_hist_cnt[162] + 1;
			8'd163:r_hist_cnt[163] <=r_hist_cnt[163] + 1;
			8'd164:r_hist_cnt[164] <=r_hist_cnt[164] + 1;
			8'd165:r_hist_cnt[165] <=r_hist_cnt[165] + 1;
			8'd166:r_hist_cnt[166] <=r_hist_cnt[166] + 1;
			8'd167:r_hist_cnt[167] <=r_hist_cnt[167] + 1;
			8'd168:r_hist_cnt[168] <=r_hist_cnt[168] + 1;
			8'd169:r_hist_cnt[169] <=r_hist_cnt[169] + 1;
			8'd170:r_hist_cnt[170] <=r_hist_cnt[170] + 1;
			8'd171:r_hist_cnt[171] <=r_hist_cnt[171] + 1;
			8'd172:r_hist_cnt[172] <=r_hist_cnt[172] + 1;
			8'd173:r_hist_cnt[173] <=r_hist_cnt[173] + 1;
			8'd174:r_hist_cnt[174] <=r_hist_cnt[174] + 1;
			8'd175:r_hist_cnt[175] <=r_hist_cnt[175] + 1;
			8'd176:r_hist_cnt[176] <=r_hist_cnt[176] + 1;
			8'd177:r_hist_cnt[177] <=r_hist_cnt[177] + 1;
			8'd178:r_hist_cnt[178] <=r_hist_cnt[178] + 1;
			8'd179:r_hist_cnt[179] <=r_hist_cnt[179] + 1;
			8'd180:r_hist_cnt[180] <=r_hist_cnt[180] + 1;
			8'd181:r_hist_cnt[181] <=r_hist_cnt[181] + 1;
			8'd182:r_hist_cnt[182] <=r_hist_cnt[182] + 1;
			8'd183:r_hist_cnt[183] <=r_hist_cnt[183] + 1;
			8'd184:r_hist_cnt[184] <=r_hist_cnt[184] + 1;
			8'd185:r_hist_cnt[185] <=r_hist_cnt[185] + 1;
			8'd186:r_hist_cnt[186] <=r_hist_cnt[186] + 1;
			8'd187:r_hist_cnt[187] <=r_hist_cnt[187] + 1;
			8'd188:r_hist_cnt[188] <=r_hist_cnt[188] + 1;
			8'd189:r_hist_cnt[189] <=r_hist_cnt[189] + 1;
			8'd190:r_hist_cnt[190] <=r_hist_cnt[190] + 1;
			8'd191:r_hist_cnt[191] <=r_hist_cnt[191] + 1;
			8'd192:r_hist_cnt[192] <=r_hist_cnt[192] + 1;
			8'd193:r_hist_cnt[193] <=r_hist_cnt[193] + 1;
			8'd194:r_hist_cnt[194] <=r_hist_cnt[194] + 1;
			8'd195:r_hist_cnt[195] <=r_hist_cnt[195] + 1;
			8'd196:r_hist_cnt[196] <=r_hist_cnt[196] + 1;
			8'd197:r_hist_cnt[197] <=r_hist_cnt[197] + 1;
			8'd198:r_hist_cnt[198] <=r_hist_cnt[198] + 1;
			8'd199:r_hist_cnt[199] <=r_hist_cnt[199] + 1;
			8'd200:r_hist_cnt[200] <=r_hist_cnt[200] + 1;
			8'd201:r_hist_cnt[201] <=r_hist_cnt[201] + 1;
			8'd202:r_hist_cnt[202] <=r_hist_cnt[202] + 1;
			8'd203:r_hist_cnt[203] <=r_hist_cnt[203] + 1;
			8'd204:r_hist_cnt[204] <=r_hist_cnt[204] + 1;
			8'd205:r_hist_cnt[205] <=r_hist_cnt[205] + 1;
			8'd206:r_hist_cnt[206] <=r_hist_cnt[206] + 1;
			8'd207:r_hist_cnt[207] <=r_hist_cnt[207] + 1;
			8'd208:r_hist_cnt[208] <=r_hist_cnt[208] + 1;
			8'd209:r_hist_cnt[209] <=r_hist_cnt[209] + 1;
			8'd210:r_hist_cnt[210] <=r_hist_cnt[210] + 1;
			8'd211:r_hist_cnt[211] <=r_hist_cnt[211] + 1;
			8'd212:r_hist_cnt[212] <=r_hist_cnt[212] + 1;
			8'd213:r_hist_cnt[213] <=r_hist_cnt[213] + 1;
			8'd214:r_hist_cnt[214] <=r_hist_cnt[214] + 1;
			8'd215:r_hist_cnt[215] <=r_hist_cnt[215] + 1;
			8'd216:r_hist_cnt[216] <=r_hist_cnt[216] + 1;
			8'd217:r_hist_cnt[217] <=r_hist_cnt[217] + 1;
			8'd218:r_hist_cnt[218] <=r_hist_cnt[218] + 1;
			8'd219:r_hist_cnt[219] <=r_hist_cnt[219] + 1;
			8'd220:r_hist_cnt[220] <=r_hist_cnt[220] + 1;
			8'd221:r_hist_cnt[221] <=r_hist_cnt[221] + 1;
			8'd222:r_hist_cnt[222] <=r_hist_cnt[222] + 1;
			8'd223:r_hist_cnt[223] <=r_hist_cnt[223] + 1;
			8'd224:r_hist_cnt[224] <=r_hist_cnt[224] + 1;
			8'd225:r_hist_cnt[225] <=r_hist_cnt[225] + 1;
			8'd226:r_hist_cnt[226] <=r_hist_cnt[226] + 1;
			8'd227:r_hist_cnt[227] <=r_hist_cnt[227] + 1;
			8'd228:r_hist_cnt[228] <=r_hist_cnt[228] + 1;
			8'd229:r_hist_cnt[229] <=r_hist_cnt[229] + 1;
			8'd230:r_hist_cnt[230] <=r_hist_cnt[230] + 1;
			8'd231:r_hist_cnt[231] <=r_hist_cnt[231] + 1;
			8'd232:r_hist_cnt[232] <=r_hist_cnt[232] + 1;
			8'd233:r_hist_cnt[233] <=r_hist_cnt[233] + 1;
			8'd234:r_hist_cnt[234] <=r_hist_cnt[234] + 1;
			8'd235:r_hist_cnt[235] <=r_hist_cnt[235] + 1;
			8'd236:r_hist_cnt[236] <=r_hist_cnt[236] + 1;
			8'd237:r_hist_cnt[237] <=r_hist_cnt[237] + 1;
			8'd238:r_hist_cnt[238] <=r_hist_cnt[238] + 1;
			8'd239:r_hist_cnt[239] <=r_hist_cnt[239] + 1;
			8'd240:r_hist_cnt[240] <=r_hist_cnt[240] + 1;
			8'd241:r_hist_cnt[241] <=r_hist_cnt[241] + 1;
			8'd242:r_hist_cnt[242] <=r_hist_cnt[242] + 1;
			8'd243:r_hist_cnt[243] <=r_hist_cnt[243] + 1;
			8'd244:r_hist_cnt[244] <=r_hist_cnt[244] + 1;
			8'd245:r_hist_cnt[245] <=r_hist_cnt[245] + 1;
			8'd246:r_hist_cnt[246] <=r_hist_cnt[246] + 1;
			8'd247:r_hist_cnt[247] <=r_hist_cnt[247] + 1;
			8'd248:r_hist_cnt[248] <=r_hist_cnt[248] + 1;
			8'd249:r_hist_cnt[249] <=r_hist_cnt[249] + 1;
			8'd250:r_hist_cnt[250] <=r_hist_cnt[250] + 1;
			8'd251:r_hist_cnt[251] <=r_hist_cnt[251] + 1;
			8'd252:r_hist_cnt[252] <=r_hist_cnt[252] + 1;
			8'd253:r_hist_cnt[253] <=r_hist_cnt[253] + 1;
			8'd254:r_hist_cnt[254] <=r_hist_cnt[254] + 1;
			8'd255:r_hist_cnt[255] <=r_hist_cnt[255] + 1;
			default:;
		endcase
	end 
	
	else;
	
end 	

//输入像素计数器,一张图片已经输入了多少个像素
reg[19:0] r_pix_cnt;
wire w_one_frame_done;//一帧图像处理完成标志
always@(posedge i_clk) begin
	if(!i_rst_n)
		r_pix_cnt <= 20'd0;
	else if(w_one_frame_done)//计满一帧图像是,计数器清零。
		r_pix_cnt <=0;
	else if(i_image_vld)
		r_pix_cnt <= r_pix_cnt + 1;
	else;
end 

assign w_one_frame_done = (r_pix_cnt==P_IMAGE_SIZE)?1:0;

//直方图统计结果输出计数

reg [8:0] r_result_cnt;

always@(posedge i_clk) begin
	if(!i_rst_n)
		r_result_cnt<=9'd0;
	else if(w_one_frame_done)
		r_result_cnt <= 9'd1;
	else if( (r_result_cnt>9'd0) && (r_result_cnt<9'd256)) 
		r_result_cnt <= r_result_cnt +1;
	else
		r_result_cnt<=9'd0;
end 

//直方图统计结果的输出
//output reg o_result_rdy,
//output reg [19:0] o_result_data
always@(posedge i_clk) begin
	if(!i_rst_n)
		o_result_rdy <= 0;
	else if(r_result_cnt !=9'd0)
		o_result_rdy <= 1;
	else
		o_result_rdy <=0;
end 	

always@(posedge i_clk) begin
	o_result_data <= r_hist_cnt[r_result_cnt-1];
end 	

endmodule


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594

直方图滤波的Matalb实现可以参考我另一篇博客,里面详细介绍了直方图滤波的原理:
MATLAB图像处理之【直方图均衡】传送门

--晓凡  2024428日于武汉书
  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/508978
推荐阅读
相关标签
  

闽ICP备14008679号