当前位置:   article > 正文

直方图均衡化实现

直方图均衡化

一 直方图均衡化的概念

直方图均衡化(Histogram Equalization)是一种**增强图像对比度**(Image Contrast)的方法,其主要思想是将一副图像的**灰度直方图分布**通过**累积分布函数**变成**近似均匀分布**(直观上在某个灰阶范围内像素值保持一致 ),从而增强图像的对比度。为了将原图像的亮度范围进行扩展, 需要一个映射函数, 将原图像的像素值均衡映射到新直方图中。

问题1:为什么选择累计分布函数?

均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是8位图像,那么像素映射函数的值域应在0255之间的,不能越界。综合以上两个条件,累积分布函数是个好的选择,因为累积分布函数是单调增函数(控制大小关系),并且值域是01(控制越界问题),所以直方图均衡化中使用的是累积分布函数。

问题2:为什么使用累积分布函数处理后像素值会均匀分布?

对于概率分布函数和累积分布函数,前者的二维图像的灰度直方图是参差不齐的,后者因为人眼视觉系统(HVS),会将小范围内的像素值认为是同一个像素值,即在某个灰阶范围内像素值保持一致,故后者的二维图像的灰度直方图呈现均匀分布;

二 直方图均衡化的原理

假设图像中像素的总数是 N,图像的灰度级数是 L,灰度级空间是[0, L-1],用
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/78950?site
推荐阅读
相关标签