赞
踩
参考资料:《Python 多线程》http://www.runoob.com/python/python-multithreading.html
目录
Python threading Thread多线程的使用方法
使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:
- #!/usr/bin/python
- # -*- coding: UTF-8 -*-
-
- import threading
- import time
-
- exitFlag = 0
-
- class myThread (threading.Thread): #继承父类threading.Thread
- def __init__(self, threadID, name, counter):
- threading.Thread.__init__(self)
- self.threadID = threadID
- self.name = name
- self.counter = counter
- def run(self): #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
- print "Starting " + self.name
- print_time(self.name, self.counter, 5)
- print "Exiting " + self.name
-
- def print_time(threadName, delay, counter):
- while counter:
- if exitFlag:
- (threading.Thread).exit()
- time.sleep(delay)
- print "%s: %s" % (threadName, time.ctime(time.time()))
- counter -= 1
-
- # 创建新线程
- thread1 = myThread(1, "Thread-1", 1)
- thread2 = myThread(2, "Thread-2", 2)
-
- # 开启线程
- thread1.start()
- thread2.start()
-
- print "Exiting Main Thread"
以上程序执行结果如下;
- Starting Thread-1
- Starting Thread-2
- Exiting Main Thread
- Thread-1: Thu Mar 21 09:10:03 2013
- Thread-1: Thu Mar 21 09:10:04 2013
- Thread-2: Thu Mar 21 09:10:04 2013
- Thread-1: Thu Mar 21 09:10:05 2013
- Thread-1: Thu Mar 21 09:10:06 2013
- Thread-2: Thu Mar 21 09:10:06 2013
- Thread-1: Thu Mar 21 09:10:07 2013
- Exiting Thread-1
- Thread-2: Thu Mar 21 09:10:08 2013
- Thread-2: Thu Mar 21 09:10:10 2013
- Thread-2: Thu Mar 21 09:10:12 2013
- Exiting Thread-2
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。
那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
- # -*-coding: utf-8 -*-
- """
- @Project: cluster
- @File : thread_processing.py
- @Author : panjq
- @E-mail : pan_jinquan@163.com
- @Date : 2019-03-13 13:43:49
- """
- # !/usr/bin/python
- # -*- coding: UTF-8 -*-
-
- # !/usr/bin/python
- # -*- coding: UTF-8 -*-
-
- import threading
- import time
-
-
- class myThread(threading.Thread):
- def __init__(self, threadID, name, counter):
- threading.Thread.__init__(self)
- self.threadID = threadID
- self.name = name
- self.counter = counter
-
- def run(self):
- print("Starting " + self.name)
- # 获得锁,成功获得锁定后返回True
- # 可选的timeout参数不填时将一直阻塞直到获得锁定
- # 否则超时后将返回False
- threadLock.acquire()
- self.print_time(self.name, self.counter, 3)
- # 释放锁
- threadLock.release()
-
-
- def print_time(self,threadName, delay, counter):
- while counter:
- time.sleep(delay)
- print("%s: %s" % (threadName, time.ctime(time.time())))
- counter -= 1
-
-
- threadLock = threading.Lock()
- threads = []
-
- # 创建新线程
- thread1 = myThread(1, "Thread-1", 1)
- thread2 = myThread(2, "Thread-2", 2)
-
- # 开启新线程
- thread1.start()
- thread2.start()
-
- # 添加线程到线程列表
- threads.append(thread1)
- threads.append(thread2)
-
- # 等待所有线程完成
- for t in threads:
- t.join()
- print("Exiting Main Thread")
下面是使用多线程的方法,实现读取图片的方法,注意这里增加了一个函数get_result,用于返回每个线程处理后的数据
其中file_processing和image_processing是本人包装好的文件处理方法和图像处理方法,具体实现的代码,这里不贴出来了,源码可查看:
file_processing:《Python常用的模块的使用技巧》https://panjinquan.blog.csdn.net/article/details/80805807#file_processing.py
image_processing:《Python常用的模块的使用技巧》https://panjinquan.blog.csdn.net/article/details/80805807#image_processing.py
- # -*-coding: utf-8 -*-
- """
- @Project: cluster
- @File : thread_operate.py
- @Author : panjq
- @E-mail : pan_jinquan@163.com
- @Date : 2019-03-13 13:43:49
- """
-
- from utils import file_processing,image_processing
- import threading
- import time
-
- threadLock = threading.Lock()#创建线程锁
-
- class FeatureThread(threading.Thread):
- def __init__(self, thread_id, func, args=()):
- '''
- :param thread_id:
- :param func:
- :param args:
- '''
- threading.Thread.__init__(self)
- self.thread_id = thread_id
- self.func = func
- self.args = args
-
- def run(self):
- print("Starting thread_id:{} ".format(self.thread_id))
- # 获得锁,成功获得锁定后返回True, 可选的timeout参数不填时将一直阻塞直到获得锁定, 否则超时后将返回False
- # threadLock.acquire() #线程加锁
- self.result = self.func(*self.args)
- # threadLock.release()# 释放锁
- def get_result(self):
- try:
- return self.result
- except Exception:
- return None
-
- def test_fun(images_list):
- time.sleep(2)
- print(images_list)
- images=[]
- for filename in images_list:
- image = image_processing.read_image(filename, resize_height=224, resize_width=224, normalization=False)
- images.append(image)
- return images
-
- def split_data_list(data_list, split_nums):
- '''
- :param data_list: 数据列表
- :param split_nums: 将列表分成多少块,注意split_nums块必须小于data_list的长度
- :return: 返回data_list分块后的索引
- '''
- data_size=len(data_list)
- if split_nums>data_size:
- print("illegal arguments,split_nums must be less than len(data_size)")
- exit(0)
- batch_index=[]
- for i in range(split_nums):
- start = int(data_size / split_nums * i)
- end = int(data_size / split_nums * (i + 1))
- if (i == split_nums - 1) :
- end = data_size
- batch_index.append((start,end))
- return batch_index
-
- def thread_test(images_list, nums_thread=4):
- thread_collection = []#创建线程容器
- # 创建新线程
- batch_index=split_data_list(images_list, split_nums=nums_thread)
- print("batch_index:{}".format(batch_index))
- for i in range(nums_thread):
- start,end=batch_index[i]
- batch_image_list=images_list[start:end]
- thread = FeatureThread(thread_id=i, func=test_fun, args=(batch_image_list,))
- thread.start() # 开启新线程
- thread_collection.append(thread)# 添加线程到线程列表
-
- # 等待所有线程完成
- for thread in thread_collection:
- thread.join()
- batch_image=thread.get_result()
- image_processing.show_image(title="image",image=batch_image[0])
-
- print("Exiting Main Thread")
-
-
- if __name__=='__main__':
- image_dir="../dataset/test_images"
- images_list = file_processing.get_images_list(image_dir, postfix=['*.png', '*.JPG'])
- print(images_list)
- thread_test(images_list, nums_thread=4)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。