当前位置:   article > 正文

matlab水塔用水问题建模,数学建模——水塔流量问题

matlab水塔流量的估计 某社区自来水由一个高12.2米,直径17.4米圆柱形水塔提供。当

数学建模——水塔流量问题》由会员分享,可在线阅读,更多相关《数学建模——水塔流量问题(7页珍藏版)》请在人人文库网上搜索。

1、实验十四水塔流量问题【实验目的】1了解有关数据处理的基本概念和原理。2初步了解处理数据插值与拟合的基本方法,如样条插值、分段插值等。3学习掌握用MATLAB命令处理数据插值与拟合问题。【实验内容】某居民区有一供居民用水的圆形水塔,一般可以通过测量其水位来估计水的流量。但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间是无法测量水塔的水位和水泵的供水量。通常水泵每天供水一两次,每次约两小时。水塔是一个高12.2米、直径17.4米的正圆柱。按照设计,水塔水位降到约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作。某一天的水位测。

2、量记录如表1所示,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。表1水位测量启示录(/表示水泵启动)时刻(h)水位(cm)09680.929481.849312.959133.878984.988815.908697.018527.938398.97822时刻(h)水位(cm)9.98/10.92/10.95108212.03105012.95102113.8899414.9896515.9094116.8391817.93892时刻(h)水位(cm)19.0486619.9684320.8482222.01/22.96/23.88105924.99103525.91。

3、1018【实验准备】在生产实践和科学研究中,常常遇到这样的问题:由实验或测量得到的一批离散样点,需要确定满足特定要求的曲线或曲面(即变量之间的函数关系或预测样点之外的数据)。如果要求曲线(面)通过所给的所有数据点(即确定一个初等函数通过已知各数据,一般用多项式或分段多项式)&#

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/193129
推荐阅读
相关标签
  

闽ICP备14008679号