当前位置:   article > 正文

正则化与权重衰减_正则化影响权值

正则化影响权值

1. 权重衰减(weight decay)

L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化。

 L2正则化与权重衰减系数L2正则化就是在代价函数后面再加上一个正则化项:

其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。系数λ就是权重衰减系数。

1.2 为什么可以对权重进行衰减

我们对加入L2正则化后的代价函数进行推导,先求导:

可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:

在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为1-ηλ/n,因为η、λ、n都是正的,所以1-ηλ/n小于1,它的效果是减小w,这也就是权重衰减(weight decay)的由来。当然考虑到后面的导数项,w最终的值可能增大也可能减小。

另外,需要提一下,对于基于mini-batch的随机梯度下降,w和b更新的公式跟上面给出的有点不同:

对比上面w的更新公式,可以发现后面那一项变了,变成所有导数加和,乘以η再除以m,m是一个mini-batch中样本的个数。

1.3 权重衰减(L2正则化)的作用作用:

权重衰减(L2正则化)可以避免模型过拟合问题。思考:L2正则化项有让w变小的效果,但是为什么w变小可以防止过拟合呢?原理:(1)从模型的复杂度上解释:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合更好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。(2)从数学方面的解释:过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。
--------------------- 
作者:Microstrong0305 
来源:CSDN 
原文:https://blog.csdn.net/program_developer/article/details/80867468 
 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/349767
推荐阅读
相关标签
  

闽ICP备14008679号