赞
踩
八数码问题的A星搜索算法实现
要求:设计估价函数,并采用c或python编程实现,以八数码为例演示A星算法的搜索过程,争取做到直观、清晰地演示算法,代码要适当加注释。
八数码难题:在3×3方格棋盘上,分别放置了标有数字1,2,3,4,5,6,7,8的八张牌,初始状态S0可自己随机设定,使用的操作有:空格上移,空格左移,空格右移,空格下移。试采用A*算法编一程序实现这一搜索过程.
这个题目的状态空间描述为一组整数对(r,s,t,u,v,w,x,y,z)。
每个字母分别对应八数码的每个位置,如下表所示。
r | s | t |
---|---|---|
u | v | w |
x | y | z |
表1-八数码状态空间对应关系
这个题目也应该采用树形结构来解,我觉得难点有二:
class Point:
def __init__(self, r, s, t, u, v, w, x, y, z):
self.r = r
self.s = s
self.t = t
self.u = u
self.v = v
self.w = w
self.x = x
self.y = y
self.z = z
self.g = 0
self.f = 0 # f = g+h
self.father = None
self.node = [r, s, t, u, v, w, x, y, z]
首先定义了八数码问题的9个位置的值。比较重要的是Point结点的father属性,指明了子节点与父节点的关系,保证了树形结构的准确性。然后定义了g属性,来保存节点的深度,f属性为g+h的和,这样就保证了启发信息。
见报告最后。
如图1是以初始节点init(2, 0, 3, 1, 8, 4, 7, 6, 5)和目的节点(1, 2, 3, 8, 4, 5, 0, 7, 6)运行的程序输出。根据OPEN表画出树形图如图2。
图1-程序输出
图2-分析过程
import copy import operator OPEN = [] # open表 CLOSED = [] # closed表 class Point: def __init__(self, r, s, t, u, v, w, x, y, z): self.r = r self.s = s self.t = t self.u = u self.v = v self.w = w self.x = x self.y = y self.z = z self.g = 0 self.f = 0 # f = g+h self.father = None self.node = [r, s, t, u, v, w, x, y, z] init = Point(2, 0, 3, 1, 8, 4, 7, 6, 5) # 初始节点 goal = Point(1, 2, 3, 8, 0, 4, 7, 6, 5) # 目标 # 返回空位的index值 def getKey(s): return s.node.index(0) def up(s, key): if key - 3 >= 0: arr = copy.copy(s.node) arr[key], arr[key - 3] = arr[key - 3], arr[key] return Point(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8]) else: return None def down(s, key): if key + 3 <= 8: arr = copy.copy(s.node) arr[key], arr[key + 3] = arr[key + 3], arr[key] return Point(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8]) else: return None def left(s, key): if key != 0 and key != 3 and key != 6: arr = copy.copy(s.node) arr[key], arr[key - 1] = arr[key - 1], arr[key] return Point(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8]) else: return None def right(s, key): if key != 2 and key != 5 and key != 8: arr = copy.copy(s.node) arr[key], arr[key + 1] = arr[key + 1], arr[key] return Point(arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], arr[6], arr[7], arr[8]) else: return None # 启发函数 def h(s, p=goal): flag = 0 for i in range(0, 9): if s.node[i] != p.node[i]: flag += 1 return flag def equal(a, b): if a.node == b.node: return True # 将open_list以f值进行排序 def open_sort(l): the_key = operator.attrgetter('f') # 指定属性排序的key l.sort(key=the_key) # 扩展节点时在open表和closed表中找原来是否存在相同属性的节点 def in_list(new, l): for item in l: if new.node == item.node: return True, item return False, None def A_star(s): global OPEN, CLOSED OPEN = [s] CLOSED = [] while OPEN: # open表非空 get = OPEN[0] # 取出open表第一个元素get if get.node == goal.node: # 判断是否为目标节点 return get OPEN.remove(get) # 将get从open表移出 CLOSED.append(get) # 将get加入closed表 # 以下得到一个get的新子节点new并考虑是否放入OPEN key = getKey(get) for i in range(0, 4): # 四个方向 if i == 0: new = up(get, key) elif i == 1: new = down(get, key) elif i == 2: new = left(get, key) elif i == 3: new = right(get, key) if new == None: # 状态非法或new折返了 pass # 如果要拓展的节点满足以上情况,将它的父亲设为当前节点,计算f,并对open_list排序 else: new.father = get new.g = get.g + 1 # 与起点的距离 new.f = get.g + h(new) # f = g + h # 如果new在open表中(只关注m,c,b的值) if in_list(new, OPEN)[0]: old = in_list(new, OPEN)[1] if new.f < old.f: # new的f<open表相同状态的f OPEN.remove(old) OPEN.append(new) open_sort(OPEN) else: pass # 继续,如果new在closed表中 elif in_list(new, CLOSED)[0]: old = in_list(new, CLOSED)[1] if new.f < old.f: # 将old从closed删除,并重新加入open CLOSED.remove(old) OPEN.append(new) open_sort(OPEN) else: pass else: OPEN.append(new) open_sort(OPEN) print('OPEN:') for o in OPEN: print(o.node,o.f,o.g) # 递归打印路径 def printPath(f): if f is None: return printPath(f.father) print(f.node) if __name__ == '__main__': final = A_star(init) if final: print('有解,解为:') printPath(final) else: print('无解!')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。