赞
踩
前面已经给大家介绍了有关生成树和生成森林的有关知识,本节来解决对于给定的无向图,如何构建它们相对应的生成树或者生成森林。
其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。
图 1 无向图
例如,图 1 中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):
此种遍历顺序构建的生成树为:
图 2 深度优先生成树
由深度优先搜索得到的树为深度优先生成树。同理,广度优先搜索生成的树为广度优先生成树,图 1 无向图以顶点 V1 为起始点进行广度优先搜索遍历得到的树,如图 3 所示:
图 3 广度优先生成树
非连通图的生成森林
非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。
非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。
深度优先生成森林
图 4 深度优先生成森林
例如,对图 4 中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。
非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。
具体实现的代码:
#include
#include
#define MAX_VERtEX_NUM 20 //顶点的最大个数
#define VRType int //表示顶点之间的关系的变量类型
#define VertexType int //图中顶点的数据类型
typedef enum{false,true}bool; //定义bool型常量
bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
typedef struct {
VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
typedef struct {
VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
AdjMatrix arcs; //二维数组,记录顶点之间的关系
int vexnum,arcnum; //记录图的顶点数和弧(边)数
}MGraph;
//孩子兄弟表示法的链表结点结构
typedef struct CSNode{
VertexType data;
struct CSNode * lchild;//孩子结点
struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph G,VertexType v){
int i=0;
//遍历一维数组,找到变量v
for (; i
if (G.vexs[i]==v) {
break;
}
}
//如果找不到,输出提示语句,返回-1
if (i>G.vexnum) {
printf("no such vertex.\n");
return -1;
}
return i;
}
//构造无向图
void CreateDN(MGraph *G){
scanf("%d,%d",&(G->vexnum),&(G->arcnum));
getchar();
for (int i=0; ivexnum; i++) {
scanf("%d",&(G->vexs[i]));
}
for (int i=0; ivexnum; i++) {
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。