当前位置:   article > 正文

FPGA学习笔记(2)——Verilog语法及ModelSim使用_modelsim运行verilog文件

modelsim运行verilog文件

1.1 语法

1、赋值语句 = 和 <=
= 为阻塞赋值,当该语句结束时,下一个语句才开始执行,串行执行
<= 为非阻塞幅值,该语句和整个语句块同时执行,并行执行

1.2 ModelSim使用

1、修改源文件路径:File -> Source Directory/Change Directory

2、查看窗口:View -> Transcript/Project/Library

3、新建工程:File->New->Project ,添加文件夹名称

4、添加源文件和TB文件:Project 右键-> Add to Project. Existing File

5、编译:Project 右键 -> Compile All
如果出现黄色三角形的警告,查看相关文件并修改,重新编译
双击红色的警告,可以看到.v文件哪里出现问题

6、仿真:Simulate -> Start Simulate -> Design -> work
- 选择TB文件,关闭Enable optimization

7、Libraries、SDF(标准延迟文件)

8、添加信号到波形图内:sim-Default 右键添加Add Wave
某些信号看不到(no data)就重新仿真,最好先添加信号,再进行仿真。
修改Run Length 到适合的时长(例如1us),run运行设置时长
左侧Restart,重置信号。

9、命令行操作:
.main clear 清空命令行
run 1us 波形运行1us

10、ctrl+A:全选信号
ctrl+G:信号排序

1.3 Verilog

1、逻辑值:

  • 0
  • 1
  • X(未知,可能是1/0)
  • Z(高阻态,外部没有激励信号,是一个悬空状态)

2、进制:二进制(d)、八进制(o)、十进制(d)和十六进制(h)

3、数值表示:[数据位宽]'[进制][数]
例子:1’b0 8’d255 16b’1001_1010_0000_1111(下划线不影响程序读取)

4、标识符:定义模块名、端口名、信号名
任意一组字母、数字、$符号和_(下划线)
标识符第一个字符必须是字母或下划线,区分大小写。
不建议大小写混合使用,普通信号建议全部小写,信号命名最好体现信号的含义,简洁清晰易懂
例子:sum、cpu_addr、clk_50、clk_cpu

5、数据类型:寄存器、线网、参数,前两个是真正在数字电路中起作用的
(1)寄存器类型:reg,默认初始值为X
例子:
reg [31:0] delay_cnt;
reg key_reg;
注:reg类型只能在always和initial语句中被幅值。
时序逻辑:always语句带有时钟信号,则该寄存器变量对应为触发器;
组合逻辑:always语句不带有时钟信号,则该寄存器变量对应为硬件连线;
(2)线网类型:表示结构实体之间的物理连线,此变量不能存储值,它的值由驱动它的元件所决定。
驱动线网类型变量的元件有门、连续幅值语句、assign。
如果没有驱动元件连接到线网上,线网为高阻态z。
例子:
wire key_flag;
(3)参数类型:常量,用parameter定义常量。
例子:
parameter H_SYNC = 11’d41; //行同步
parameter H_BACK = 11’b2; //行显示后沿
parameter H_DISP = 11’d480; //行有效数据
parameter H_FRONT = 11’d2; //行显示前沿
parameter H_TOTAL = 11’d525; //行扫描周期

参数型数据常用于定义状态机的状态、数据的位宽和延迟大小。
标识符、参数传递

6、运算符:算数运算符(+ - * / %)、关系运算符(> < >= <= == !=)、逻辑运算符(! && ||)、
条件运算符(? : ,例子:a?b:c,a为真,选择b,否则选择c)、位运算符(~ & | ^)、
移位运算符(<< >> ,例子:8’b11110000 >>2 = 2’b00111100,0填充)、拼接运算符({})
有优先级,用括号!

7、注释方式: // 和 /* */

8、关键字
变量名不能与关键字同名

9、框架:
(1)模块block(包括接口和逻辑功能)
例子:

module block(a,b,c,d);
	input a,b;
	output c,d;
	
	assign c = a | b;
	assign d = a & b;
endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

每个verilog程序包括:端口定义、IO说明、内部信号声明、功能定义。

注意:有可以综合的语句和不可综合的语句(仿真)

(2)可综合的语句:
assign、always、例化实例元件,这三种逻辑功能是并行的。
(2-1)在always块中,逻辑是顺序执行的。
而多个always块之间是并行的。
(2-2)模块调用:信号通过模块端口在模块之间传递。
例子:
文件seg_led_static_top.v:

module seg_led_static_top(
	input		sys_clk,
	input		sys_rst_n,
	
	output	[5:0]	sel,
	output	[7:0]	seg_led
);
	parameter	TIME_SHOW = 25'd25000_000;
	wire		add_flag;
	//模块调用1:
	time_count #(
		.MAX_NUM	(TIME_SHOW)		//参数传递
	) u_time_count(
		.clk		(sys_clk),
		.rst_n		(sys_rst_n),
		.flag		(add_flag)
	);
	//模块调用2:必须按照模块定义顺序列写(不推荐)
	time_count #(
		.MAX_NUM	(TIME_SHOW)		//参数传递
	) u_time_count(
		sys_clk,
		sys_rst_n,
		add_flag
	);
endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

其他文件 time_cout.v:

module time_count(
	input		clk,
	input		rst_n,
	output	reg	flag
);

parameter	MAX_NUM = 50000_00;
reg	[24:0]	cnt;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

10、结构语句:
(1)initial:在模块中只执行一次。常用来写测试文件,产生仿真测试信号(激励信号)和对存储器赋初始值。
例子:

initial begin
	sys_clk		<= 1'b0;
	sys_rst_n 	<= 1'b0;
	touch_key 	<= 1'b0;
	#20 sys_rst_n <= 1'b0;
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

(2)always:不断重复活动,但是只有和一定的时间控制结合在一起才有作用。
例子:

always #10 sys_clk = ~sys_clk;
  • 1

always的时间控制有:边沿触发,电平触发
可以是单个信号,也可以是多个信号(用or连接)
例子:

always @(posedge sys_clk or negedge sys_rst_n) begin		//敏感列表
	if (!sys_rst_n)
		counter <= 24'd0;
	else if(counter < 24'd1000_0000)
		counter <= counter + 1'b1;
	else
		counter <= 24'd0;
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

边沿触发(posedge,negedge)的always常常描述时序逻辑行为。使用非阻塞幅值<=
电平触达的always常常描述组合逻辑行为。使用阻塞幅值=
例子:

always @(a or b or c or d or e) begin
	out = a ?(b+c):(d + e);
end
  • 1
  • 2
  • 3

可以用*代表所有变量,@(*)对后面语句块所有输入变量的变化都是敏感的!

always @(*) begin
	out = a ?(b+c):(d + e);
end
  • 1
  • 2
  • 3

组合逻辑没有CLK信号,时序逻辑有CLK信号,具备记忆功能。
注意:
(1)不允许在多各always块中对同一个变量进行幅值
(2)在同一个always块中不要既用非阻塞幅值又用阻塞赋值

11、条件语句:
(1)if

if (a > b)
	out = data_1;
  • 1
  • 2

(2)if else

if (a > b)
	out = data_1;
else
	out = data_2;
  • 1
  • 2
  • 3
  • 4

(3)if else嵌套:

if (fx1)
	out = data_1;
else if(fx2)
	out = data_2;
else if(fx3)
	out = data_3;
else
	out = data_4;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

(4)使用begin和end包含多个语句:

if (a) begin
	语句1;
	语句2;
end
else begin
	语句1;
	语句2;
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

判断表达式的值:若为0,x,z,按照假进行处理,若为1,按照真处理。

(5)case语句:
casez:比较时,不考虑表达式中的高阻态z。
casex:比较时,不考虑高阻态z和不定值x
例子:

case(num)
	4'h0	:	seg_led <= 8'b1111_0000;
	4'h1	:	seg_led <= 8'b0000_0000;
	default	:	seg_led <= 8'b1111_1111;
endcase
  • 1
  • 2
  • 3
  • 4
  • 5

注意:num和n’hx必须位宽相等。

casex(sel)
	8'b1100_zzzz	:	语句1;
	8'b1100_xxzz	:	语句2;
endcase
  • 1
  • 2
  • 3
  • 4

1.4 状态机

例子:利用FPGA实现电子门锁。
序列检测器
1、状态机(FSM):在有限个状态之间按一定规律转换的时序电路

2、模型:
(1)mealy状态机:输出与输入信号和当前状态有关。
组合逻辑F->状态寄存器->组合逻辑G
(2)moore状态机:输出只与当前状态有关。

3、状态机设计:
(1)步骤:状态空间定义,状态跳转,下个状态判断,各个状态下的动作。
例子:

/*   part1:状态空间定义    */
//define state space
parameter	SLEEP	=	2'b00;
parameter	STUDY	=	2'b01;
parameter	EAT		=	2'b10;
parameter	AMUSE	=	2'b11;
//internal variable
reg	[1:0]	current_state;
reg	[1:0]	next_state;

//独热码:每个状态只有一个寄存器置位,译码逻辑简单,生成的电路简单。
parameter	SLEEP	=	4'b0001;
parameter	STUDY	=	4'b0010;
parameter	EAT		=	4'b0100;
parameter	AMUSE	=	4'b1000;
//internal variable
reg	[3:0]	current_state;
reg	[3:0]	next_state;

/*   part2:状态跳转   */
//transition
always @(posedge clk or negedge rst_n) begin		//敏感列表:时钟信号以及复位信号边沿的组合
	if(!rst_n)
		current_state <= SLEEP;
	else
		current_state <= next_state;				//使用非阻塞赋值
end

/*   part3:下个状态判断(组合逻辑)   */
//next state decision
always @(current_state or input_signals) begin
	case (current_state)
		SLEEP	:begin
				if (clock_alarm)
					next_state = STUDY;
				else
					next_state = SLEEP;
		end
		STUDY	:begin
				if (lunch_time)
					next_state = EAT;
				else
					next_state = STUDY;
		end
		EAT		:begin
				if (lunch_time)
					next_state = EAT;
				else
					next_state = STUDY;
		end
		AMUSE	:begin
				if (lunch_time)
					next_state = EAT;
				else
					next_state = STUDY;
		end
		default:begin
				if (lunch_time)
					next_state = EAT;
				else
					next_state = STUDY;
		end
	endcase
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

注意:
(1)组合逻辑使用阻塞赋值
(2)if/else要配对以免产生latch(锁存器),case的状态如果没有给完全,必须要给default,否则也会生成latch

/*   part4:各个状态下的动作(组合逻辑)   */
//action
wire read_book;
assign read_book = (current_state == STUDY) ? 1'b1 : 1'b0;

always @(current_state) begin
	if(current_state == STUDY)
		read_book = 1'b1;
	else
		read_book = 1'b0;
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

注意:组合逻辑使用阻塞赋值

一个三段式状态机例子:divider7_fsm.v
三段式可以在组合逻辑后再增加一级寄存器(时序逻辑,有clk信号输入)来实现时序逻辑输出:
(1)可以有效滤除组合逻辑输出的毛刺;
(2)可以有效地进行时序计算和约束;
(3)对总线形式的输出信号来说,容易使总线数据对齐,从而减小总线数据间的偏移,减小接收端数据采样出错的频率。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/848749
推荐阅读
相关标签
  

闽ICP备14008679号