当前位置:   article > 正文

基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测

基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测

目录
背影
摘要
LSTM的基本定义
LSTM实现的步骤
BILSTM神经网络
基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测
完整代码:基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89127617
效果图
结果分析
展望
参考论文

背影

基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测,长短期神经网络是一种改进党的RNN神经网络,克服了梯度爆炸的问

摘要

LSTM原理,基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测

LSTM的基本定义

LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为它可以记忆不定时间长度的数值,区块中有一个gate能够决定input是否重要到能被记住及能不能被输出output。
图1底下是四个S函数单元,最左边函数依情况可能成为区块的input,右边三个会经过gate决定input是否能传入区块,左边第二个为input gate,如果这里产出近似于零,将把这里的值挡住,不会进到下一层。左边第三个是forget gate,当这产生值近似于零,将把区块里记住的值忘掉。第四个也就是最右边的input为output gate&#x

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/463610
推荐阅读
相关标签
  

闽ICP备14008679号