当前位置:   article > 正文

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(五)RMS 均方根归一化

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(五)RMS 均方根归一化

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(五)RMS 均方根归一化

RMS(均方根归一化)

均方根归一化(RMSNorm)是一种相对新颖的归一化技术,由 Biao Zhu、Rico Sennrich 在 2019 年提出。与 BN 和 LN 不同,RMSNorm 基于激活本身的均方根对激活进行归一化,而不是使用小批量或层统计数据。这种方法可确保无论小批量大小或特征数量如何,激活的缩放都是一致的。此外,RMSNorm 引入了可学习的尺度参数,提供与批量归一化类似的适应性。

在这里插入图片描述

在这里插入图片描述

像层归一化一样, 也有一个可学习的参数gamma(左侧公式中的g ),它乘以归一化值。

class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        # The gamma parameter
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x: torch.Tensor):
        # (B, seq_len, dim) -> (B, seq_len, 1)
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x: torch.Tensor):
        # dim : (B, seq_len, dim) -> (B, seq_len, dim)
        return self.weight * self._norm(x.float()).type_as(x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

在这里插入图片描述

系列博客

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(一)
https://duanzhihua.blog.csdn.net/article/details/138208650
探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(二)
https://duanzhihua.blog.csdn.net/article/details/138212328

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(三)KV缓存
https://duanzhihua.blog.csdn.net/article/details/138213306

探索和构建 LLaMA 3 架构:深入探讨组件、编码和推理技术(四)分组多查询注意力
https://duanzhihua.blog.csdn.net/article/details/138216050

在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/498138
推荐阅读
相关标签
  

闽ICP备14008679号