当前位置:   article > 正文

elasticsearch理论_essuess

essuess

其他资料,以及自我整合而来,拿给自己看的。不喜勿喷

 

 

ES理解:

es中存储数据的基本单位是索引,比如说你现在要在es中存储一些订单数据,你就应该在es中创建一个索引,order_idx,所有的订单数据就都写到这个索引里面去,一个索引差不多就是相当于是mysql里的一张表。index -> type -> mapping -> document -> field。

 

index:mysql里的一张表

 

type:没法跟mysql里去对比,一个index里可以有多个type,每个type的字段都是差不多的,但是有一些略微的差别。

 

好比说,有一个index,是订单index,里面专门是放订单数据的。就好比说你在mysql中建表,有些订单是实物商品的订单,就好比说一件衣服,一双鞋子;有些订单是虚拟商品的订单,就好比说游戏点卡,话费充值。就两种订单大部分字段是一样的,但是少部分字段可能有略微的一些差别。

 

所以就会在订单index里,建两个type,一个是实物商品订单type,一个是虚拟商品订单type,这两个type大部分字段是一样的,少部分字段是不一样的。

 

很多情况下,一个index里可能就一个type,但是确实如果说是一个index里有多个type的情况,你可以认为index是一个类别的表,具体的每个type代表了具体的一个mysql中的表

 

每个type有一个mapping,如果你认为一个type是一个具体的一个表,index代表了多个type的同属于的一个类型,mapping就是这个type的表结构定义,你在mysql中创建一个表,肯定是要定义表结构的,里面有哪些字段,每个字段是什么类型。。。

 

mapping就代表了这个type的表结构的定义,定义了这个type中每个字段名称,字段是什么类型的,然后还有这个字段的各种配置

 

实际上你往index里的一个type里面写的一条数据,叫做一条document,一条document就代表了mysql中某个表里的一行给,每个document有多个field,每个field就代表了这个document中的一个字段的值

 

接着你搞一个索引,这个索引可以拆分成多个shard,每个shard存储部分数据。

 

接着就是这个shard的数据实际是有多个备份,就是说每个shard都有一个primary shard,负责写入数据,但是还有几个replica shard。primary shard写入数据之后,会将数据同步到其他几个replica shard上去。

 

通过这个replica的方案,每个shard的数据都有多个备份,如果某个机器宕机了,没关系啊,还有别的数据副本在别的机器上呢。高可用了吧。

 

es集群多个节点,会自动选举一个节点为master节点,这个master节点其实就是干一些管理的工作的,比如维护索引元数据拉,负责切换primary shard和replica shard身份拉,之类的。

 

要是master节点宕机了,那么会重新选举一个节点为master节点。

 

如果是非master节点宕机了,那么会由master节点,让那个宕机节点上的primary shard的身份转移到其他机器上的replica shard。急着你要是修复了那个宕机机器,重启了之后,master节点会控制将缺失的replica shard分配过去,同步后续修改的数据之类的,让集群恢复正常。

 

(1)es写数据过程

 

1)客户端选择一个node发送请求过去,这个node就是coordinating node(协调节点)

2)coordinating node,对document进行路由,将请求转发给对应的node(有primary shard)

3)实际的node上的primary shard处理请求,然后将数据同步到replica node

4)coordinating node,如果发现primary node和所有replica node都搞定之后,就返回响应结果给客户端

 

(2)es读数据过程

 

查询,GET某一条数据,写入了某个document,这个document会自动给你分配一个全局唯一的id,doc id,同时也是根据doc id进行hash路由到对应的primary shard上面去。也可以手动指定doc id,比如用订单id,用户id。

 

你可以通过doc id来查询,会根据doc id进行hash,判断出来当时把doc id分配到了哪个shard上面去,从那个shard去查询

 

1)客户端发送请求到任意一个node,成为coordinate node

2)coordinate node对document进行路由,将请求转发到对应的node,此时会使用round-robin随机轮询算法,在primary shard以及其所有replica中随机选择一个,让读请求负载均衡

3)接收请求的node返回document给coordinate node

4)coordinate node返回document给客户端

 

(3)es搜索数据过程

 

es最强大的是做全文检索,就是比如你有三条数据

 

java真好玩儿啊

java好难学啊

j2ee特别牛

 

你根据java关键词来搜索,将包含java的document给搜索出来

 

es就会给你返回:java真好玩儿啊,java好难学啊

 

1)客户端发送请求到一个coordinate node

2)协调节点将搜索请求转发到所有的shard对应的primary shard或replica shard也可以

3)query phase:每个shard将自己的搜索结果(其实就是一些doc id),返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果

4)fetch phase:接着由协调节点,根据doc id去各个节点上拉取实际的document数据,最终返回给客户端

 

(4)搜索的底层原理,倒排索引,画图说明传统数据库和倒排索引的区别

 

(5)写数据底层原理

 

1)先写入buffer,在buffer里的时候数据是搜索不到的;同时将数据写入translog日志文件

 

2)如果buffer快满了,或者到一定时间,就会将buffer数据refresh到一个新的segment file中,但是此时数据不是直接进入segment file的磁盘文件的,而是先进入os cache的。这个过程就是refresh。

 

每隔1秒钟,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/569126
推荐阅读
相关标签
  

闽ICP备14008679号