当前位置:   article > 正文

【C++进阶08】哈希的应用(位图and布隆过滤器)

【C++进阶08】哈希的应用(位图and布隆过滤器)

在这里插入图片描述

一、位图

1.1 位图的概念

面试题

给40亿个不重复的无符号整数,没排过序
给一个无符号整数,如何快速判断一个数是否在
这40亿个数中。【腾讯】

能想到的解决思路:

  1. 遍历,时间复杂度O(N)
  2. 排序(O(NlogN)) + 利用二分查找: logN
  3. 放到哈希表或红黑树

40亿整数就是16GB,无法全部加载到内存
遍历、排序和二分查找就都不太现实
虽然可以在文件中归并,但就慢了很多
文件中不能用下标,自然无法二分查找

虽然可以将数据一段一段放进哈希表和红黑树
但每次将数据插入进红黑树又释放
相当于暴力查找40亿数据
红黑树的特性完全没用上

所以以上3点都是不合适的
最大的原因就是内存不足

位图解决
数据是否在给定的整形数据中
结果是在或者不在,刚好是两种状态
那么可以用比特位表示数据是否存在
1为存在,0为不存在

比如数据{1,2,4,9,1517,23}在位图的样子
在这里插入图片描述
所谓位图,就是用每一位来存放某种状态
适用于海量数据,数据无重复的场景
通常是用来判断某个数据存不存在的

一个比特位就能表示一个整型数据在或不在
一个整型就是32比特位,相当于缩小了32倍
也就是说16G的数据只需要0.5G

1.2 位图的模拟实现

在这里插入图片描述
位图的三个主要接口:

  1. set:将数据映射位置置成1,表示存在
  2. reset:将数据映射位置置成0,表示删除
  3. test:检测数据是否存在于位图
template <size_t N>
class bitset
{
public:
	bitset()
	{
		_bits.resize(N / 8 + 1, 0); // 需求N个比特位,按字节给,所以除8.除会去余,所以加1
	}

	void set(size_t x) // 将x比特位置1
	{
		size_t i = x / 8; // 计算x映射的位在第i个char数组位置
		size_t j = x % 8; // 计算x映射的位在这个char的第j个比特位
		
		_bits[i] |= (1 << j);
	}

	void reset(size_t x) // 将x比特位置0
	{
		size_t i = x / 8;
		size_t j = x % 8;

		_bits[i] &= ~(1 << j);
	}

	bool test(size_t x) // 检测位图中x是否为1
	{
		size_t i = x / 8; 
		size_t j = x % 8; 
		
		return _bits[i] & (1 << j);
	}
private:
	vector<char> _bits;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

1.3 位图的应用

1、给定100亿个整数,设计算法找到只出现一次的整数?

方法:

  1. 创建两个位图对象bs1、bs2
  2. 遍历数据
    出现0次用00表示
    出现1次用01表示
    出现2次用10表示
    出现3次及以上用11表示

如果数据映射的位置在bs1里为1
在bs2里为0表示此数据出现过2次
如果在bs1和bs2里都为1,表示出现3次及以上
方法实现:

template <size_t N>
class twobitset
{
public:
	void set(size_t x) 
	{
		// 00 -> 01
		if (_bs1.test(x) == false 
		&& _bs2.test(x) == false)
		{
			_bs2.set(x);
		}
		else if (_bs1.test(x) == false 
			&& _bs2.test(x) == true)
		{
			// 01 -> 10
			_bs1.set(x);
			_bs2.reset(x);
		}
		// 10 不变
		
	}

	void print()
	{
		for (size_t i = 0; i < N; i++) 
		{
			if (_bs2.test(i))
				cout << i << " ";
		}
	}
private:
	bitset<N> _bs1;
	bitset<N> _bs2;
};

void test_twobitset3()
{
	twobitset<1000> bs;
	int a[] = { 0, 12, 12, 0, 20, 12, 12, 0, 223, 22, 45, 4 };
	for (auto e : a)
	{
		bs.set(e);
	}

	bs.print();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

2、给两个文件,分别有100亿个整数
我们只有1G内存,如何找到两个文件交集?

方法1:
其中的一个文件读到内存的位图中
再读另一个文件,判断在不在上面的位图
在就是交集

问题:
找出的交集存在重复值

解决方法1:
一个数为交集就在第一个文件set那个数

解决方法2:
读取文件1映射到位图1
读取文件2映射到位图2
判断数据映射的位置在这两个位图中
是否都为1

for (int i = 0; i < N; i++)
{
	if (bs1.test(i) && bs2.test(i))
	{
		// 交集
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

或者按位与这两个位图

3、位图应用变形:1个文件有100亿个int
1G内存,设计算法找到出现次数不超过2次的所有整数

定义两个位图对象
将数据插入到位图
出现0次用00表示
出现1次用01表示
出现2次用10表示
出现3次及以上用11表示

除了两个位图对应位置都为1
其他都打印

二、布隆过滤器

位图的优点:

  1. 速度快、节省空间

缺点:

  1. 只能映射整形,其他如浮点数、string等
    不能存储映射

布隆过滤器便是解决此缺点

2.1 布隆过滤器提出

我们在使用新闻客户端看新闻时
它会给我们不停地推荐新的内容
它每次推荐时要去重
去掉那些已经看过的内容,问题来了
新闻客户端推荐系统如何实现推送去重的?
用服务器记录了用户看过的所有历史记录
当推荐系统推荐新闻时会从每个用户
的历史记录里进行筛选
过滤掉那些已经存在的记录
如何快速查找呢?

  1. 用哈希表存储用户记录
    缺点:浪费空间
  2. 用位图存储用户记录
    缺点:位图一般只能处理整形
    如果内容编号是字符串
    就无法处理了
  3. 将哈希与位图结合,即布隆过滤器

2.2 布隆过滤器概念

布隆过滤器是由布隆(Burton Howard Bloom)
在1970年提出的 一种紧凑型的、比较巧妙的概
率型数据结构,特点:高效地插入和查询
可以用来告诉你
“某样东西一定不存在或者可能存在”
它是用多个哈希函数
将一个数据映射到位图结构中
此种方式不仅可以提升查询效率
也可以节省大量的内存空间
在这里插入图片描述
用多个哈希函数将字符映射到不同的位置
以此降低重复率,查找时在所有映射的位置
查看是否均为1

查找一个值在与不在
在:是不准确的,存在误判
不在:是准确的
比如美团,本来不在
查找时每个映射的位置都跟别人冲突
导致认为它在

2.3 布隆过滤器的使用场景

  1. 能容忍误判场景
    比如:改名时,快速判断昵称是否使用过

昵称在数据库,而数据库在磁盘
如果去磁盘查找修改的昵称是否使用过
效率非常慢,我们平时改昵称时
只要输入就能立即反馈昵称是否使用

这时可以把所有用户昵称放入布隆过滤器
即使误判修改昵称已使用,用户也感知不到
(只要误判率不高还是可以接受的)

2.4 布隆过滤器的实现

如何选择哈希函数个数和布隆过滤器长度
k 为哈希函数个数
m 为布隆过滤器长度
n 为插入的元素个数
p 为误报率
在这里插入图片描述
在这里插入图片描述
代码实现:

struct BKDRHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (auto ch : s)
		{
			hash = hash * 30 + ch;
		}
		return hash;
	}
	
};

struct APHash
{
	size_t operator()(const string& s) // 仿函数的作用:把一个类当作对象去访问或把一个对象像函数去使用
	{
		size_t hash = 0; // 加register放到最前面表示建议变量放到寄存器里面
		for (long i = 0; i < s.size(); i++)
		{
			size_t ch = s[i];
			if ((i & 1) == 0) // i 是偶数走if,i 是奇数else.奇数二进制的低位一定是1,按位与1得到的便是奇数
				hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
			else
				hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
		}
		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};

// N是key,插入值的个数
template<size_t N, 
class K = string,
class Hash1 = BKDRHash,
class Hash2 = APHash,
class Hash3 = DJBHash>
class BloomFilter
{
public:
	void set(const K& key)
	{
		size_t len = N * _X;
		size_t hash1 = Hash1()(key) % len; // 用Hash仿函数转成可以取模的整型值,模N是怕转出来的值超出N
		_bs.set(hash1);

		size_t hash2 = Hash2()(key) % len;
		_bs.set(hash2);

		size_t hash3 = Hash3()(key) % len;
		_bs.set(hash3);
		cout << hash1 << " " << hash2 << " " << hash3 << endl;
	}

	bool test(const K& key) // 判断3个位置,有一个位置为0就是不在
	{
		size_t len = N * _X;
		size_t hash1 = Hash1()(key) % len; 
		if (!_bs.test(hash1))
			return false;
		size_t hash2 = Hash2()(key) % len;
		if (!_bs.test(hash2))
			return false;

		size_t hash3 = Hash3()(key) % len;
		if (!_bs.test(hash3))
			return false;
		return true;
	}
private:
	static const size_t _X = 6; // 比重为6,冲突率5%以内.比重建议5-10(冲突率1%-10%)
	bitset<_X * N> _bs; // 开_X倍的空间,空间开得越大,冲突率越低
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

2.5 布隆过滤器的应用

1、给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法

100亿query:假设每个query平均50byte
100亿就是5000亿byte,也就是大约占用500G

  1. 可以把每个文件分成1000份读进内存
    每份是0.5个G

在这里插入图片描述
B文件的每一份在A文件的每一份里去找
但是这样时间复杂度太高了
于是可以用哈希函数来切分文件
哈希切分:i = HashFunc(query) % 1000
每个query,算出i是多少就进入Ai小文件
B也是一样,算出i放进Bi小文件
B0、B1……在对应的A0、A1……
小文件里去找,找到了就是交集

跟之前的哈希桶很像
进入同一个桶的都是冲突的值
在这里A和B相同的值用的同一个哈希函数
便一定会进入同一个编号的文件
在这里插入图片描述
会导致的问题:
因为不是平均切分,可能会出现冲突多
每个Ai、Bi小文件过大

  1. 单个文件大量重复query
  2. 单个文件大量不同query

解决方法:
直接使用unordered_set/set
依次读取文件query,插入set中

  1. 如果读取整个小文件query
    都可以成功插入set,说明是情况1
  2. 如果读取整个小文件query
    插入过程抛异常则是情况2
    换其他哈希函数,再次分割求交集

说明:set插入key如果已经有了返回false
如果内存不足抛bad_alloc异常
剩下的都会成功

2、如何扩展BloomFilter使得它支持删除元素的操作

删除一个元素可能会影响其它元素
用多个位图计数的方式表示每个位置被映射了几次
删除时减减该位置

3、哈希切割
给一个超过100G大小的log file, log中存着IP地址,
设计算法找到出现次数最多的IP地址?
与上题条件相同,如何找到top K的IP?

解决方法:
哈希切分成500个小文件
依次读取数据,i = HashFunc(ip)%500
这个ip就是第i个小文件

依次处理每个小文件
使用unordered_map/map统计ip出现次数

  1. 统计过程抛异常,说明单个文件过大
    冲突太多,需要重新换哈希函数
    再次哈希切分这个小文件
  2. 如果没有抛异常,则正常统计
    统计完一个小文件,记录最大的
    clear map,再统计下一个小文件

总结特点:
相同的ip一定进入相同的小文件
读取单个小文件就可以统计ip出现次数

在这里插入图片描述
本篇博客完,感谢阅读

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/468164
推荐阅读
相关标签