赞
踩
暑假是学生老师们拥有的最长假期,这么长的假期,光待在家里太浪费了,何不选择一个好去处,欣赏欣赏夏季的美景?当然,并不是所有地方都适合这个时节去的,那么,暑假适合去国内那些地方旅游呢?现在我们学习了python,当然要用不一样的方式来选择旅游景点,利用大数据的神奇之处,我们一起来分析全国的旅游景点数据,选出最佳旅游景点。
import numpy as np
import pandas as pd
import os
from pyecharts.charts import Bar, Pie, Map, Page, BMap, Scatter
from pyecharts import options as opts
data_files = os.listdir('E:/py练习/数据分析/旅游网站数据/data/')
df_all = pd.DataFrame()
for file in data_files:
df_one = pd.read_excel('E:/py练习/数据分析/旅游网站数据/data/{}'.format(file))
df_all = df_all.append(df_one, ignore_index=True)
df_all.head()
df_qa = df_all.copy()
df_qa.drop_duplicates(inplace=True)
df_qa.shape
df_qa['province'] = df_qa.districts.str.split('·').apply(lambda x:x[0])
df_qa['sales_volume'] = df_qa['saleCount'] * df_qa['qunarPrice']
df_qa.head()
# 1. 景点星级分布 star_num = df_qa['star'].value_counts() # 数据对 data_pair = [list(z) for z in zip(star_num.index, star_num.values.tolist())] # 饼图 pie1 = Pie(init_opts=opts.InitOpts(width='900px', height='750px')) pie1.add( series_name="num", radius=["35%", "60%"], data_pair=data_pair, label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) pie1.set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", pos_top='30%', orient="vertical"), title_opts=opts.TitleOpts(title='全国景点星级分布')) pie1.set_series_opts( tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)") ) pie1.render_notebook()
# 国内城市top10
city_top10 = df_qa.province.value_counts()[:15]
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='900px', height='750px'))
bar1.add_xaxis(city_top10.index.tolist())
bar1.add_yaxis("省份", city_top10.values.tolist())
bar1.set_global_opts(title_opts=opts.TitleOpts(title="全国景点数量Top10"),
visualmap_opts=opts.VisualMapOpts(max_=1200))
bar1.render_notebook()
saleCount_num = df_qa.groupby('province')['saleCount'].sum().sort_values(ascending=False)
# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add("", [list(z) for z in zip(saleCount_num.index.tolist(), saleCount_num.values.tolist())],
maptype='china')
map1.set_global_opts(title_opts=opts.TitleOpts(title='各省份销量热力图'),
visualmap_opts=opts.VisualMapOpts(max_=80000))
map1.render_notebook()
sales_rank = df_qa.pivot_table(index='sightName', values='saleCount', aggfunc='mean')
sales_rank = sales_rank.reset_index()
sales_rank['saleCount'] = sales_rank['saleCount'].astype('int')
sales_rank = sales_rank.sort_values('saleCount', ascending=False)[:20]
sales_rank = sales_rank.sort_values('saleCount', ascending=True)
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(sales_rank.sightName.tolist())
bar2.add_yaxis("景点", sales_rank.saleCount.tolist())
bar2.set_global_opts(title_opts=opts.TitleOpts(title="景点门票销量排行分析Top20"))
bar2.set_series_opts(label_opts=opts.LabelOpts(position='right'))
bar2.set_colors(['#D02C2A'])
bar2.reversal_axis()
bar2.render_notebook()
sales_rank_2 = df_qa.pivot_table(index='sightName', values='sales_volume', aggfunc='mean')
sales_rank_2 = sales_rank_2.reset_index()
sales_rank_2['sales_volume'] = sales_rank_2['sales_volume'].astype('int')
sales_rank_2 = sales_rank_2.sort_values('sales_volume', ascending=False)[:20]
sales_rank_2 = sales_rank_2.sort_values('sales_volume', ascending=True)
bar3 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar3.add_xaxis(sales_rank_2.sightName.tolist())
bar3.add_yaxis("景点", sales_rank_2.sales_volume.tolist())
bar3.set_global_opts(title_opts=opts.TitleOpts(title="景点门票销售额排行分析Top20"))
bar3.set_series_opts(label_opts=opts.LabelOpts(position='right'))
bar2.set_colors(['#D02C2A'])
bar3.reversal_axis()
bar3.render_notebook()
这里就没有带小伙伴一起从爬旅游网站的数据开始做了,本次爬取的旅游网站数据是去哪儿网的数据,如果还有不会爬虫的小伙伴可以去看我以前的博客python0基础爬虫实战,如果有小伙伴想偷懒,也可以直接私信林哥,林哥可以直接把数据给到大家,大家可以尝试着做一做这个项目,可以尝试不同的风格,不同的色彩,做出来还是挺有成就感的。
喜欢林哥的文章可以给林哥点点关注,一键三连,以后林哥会经常出一些干货来帮助大家学习编程
愿大家都能在编程这条路,越走越远。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。