赞
踩
作者 | CDA数据分析师
假设(hypothesis),又称统计假设,是对总体参数的具体数值所作的陈述。假设检验(hypothesis test) 是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
假设检验的特点就是采用逻辑上的反证法和依据统计上 的小概率原理。小概率事件在单独一次的试验中基本上不会发生,可以不予考虑。在假设检验中,我们做出判断时所依据的逻辑是:如果在原假设正确的前提下,检验统计量的样本观测值的出现属于小概率事件,那么可以认为原假设不可信,从而否定它,转而接受备择假设。
一个完整的假设检验过程,包括以下几个步骤:
(1)提出假设;
(2)构造适当的检验统计量,并根据样本计算统计量的具体数值;
(3)规定显著性水平,建立检验规则;
(4)做出判断。
(1)对陈述正确性的检验
在这种情况下,原假设通常是基于假定的陈述是正确的。然后建立备择假设,为拒绝提供统计证据,从而证明这个假定的陈述是错误的。
(2)对研究性假设的检验
在研究性假设检验的调查研究中,应该建立原假设和备择假设,并用备择假设来表示研究性假设,这样如果拒绝,将支持样本所得出的结论以及应该采取某些行动。
(3)对决策情况下的检验
在决策情况下的检验研究中,决策者必须从两种措施中挑选其中一种,无论是接受还是拒绝,都必须采取一定的措施。
(1)P值规则
所谓P值,实际上是检验统计量超过(大于或小于)具体样本观测值的概率。如果P值小于所给定的显著性水平,则认为原假设不太可能成立;如果P值大于所给定的标准,则认为没有充分的证据否定原假设。
(2)临界值规则
假设检验中,还有另外一种做出结论的方法:根据所提出的显著性水平标准(它是概率密度曲线的尾部面积)查表得到相应的检验统计量的数值,称作临界值,直接用检验统计量的观测值与临界值作比较,观测值落在临界值所划定的尾部(称之为拒绝域)内,便拒绝原假设;观测值落在临界值所划定的尾部之外(称之为不能拒绝域)的范围内,则认为拒绝原假设的证据不足。这种做出检验结论的方法,我们称之为临界值规则。
•第Ⅰ类错误 (type Ⅰ error)
又称弃真错误,当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率通常记为α 。
•第Ⅱ类错误(type Ⅱ error)
又称取伪错误,当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的概率通常记为β。
在统计实践中,进行假设检验时一般先控制第Ⅰ类错误发生的概率,并确定犯第Ⅰ类错误的概率最大值,称为检验的显著性水平。在样本容量n不变的条件下,犯两类错误的概率常常呈现反向的变化,要使α和β 都同时减小,除非增加样本的容量。因此,统计学家奈曼与皮尔逊提出了一个原则:即在控制犯第一类错误的概率
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。