赞
踩
- import numpy as np
- import torch
-
- # 糖尿病预测研判
- # 1. 处理数据
- xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
- x_data = torch.from_numpy(xy[:, :-1])
- y_data = torch.from_numpy(xy[:, [-1]])
-
- # 2. 建立模型
- # 2. 设计模型 继承自torch.nn.Module
- class Model(torch.nn.Module):
- def __init__(self):
- super(Model, self).__init__()
- self.linear1 = torch.nn.Linear(8, 6)
- self.linear2 = torch.nn.Linear(6, 4)
- self.linear3 = torch.nn.Linear(4, 1)
- self.sigmoid = torch.nn.Sigmoid()
-
- # 覆盖父类方法
- def forward(self, x):
- """预测结果 计算loss"""
- x = self.sigmoid(self.linear1(x))
- x = self.sigmoid(self.linear2(x))
- x = self.sigmoid(self.linear3(x))
- return x
-
- model = Model()
-
- # 3.0
- # 损失函数
- criterion = torch.nn.BCELoss(size_average=False)
- # 优化器
- optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
-
- # 4. 训练周期
- for epoch in range(1000000):
- # 调用forward函数
- y_pred = model(x_data)
- # 计算损失 loss为一个标量
- loss = criterion(y_pred, y_data)
- # print(epoch, loss)
- # 清空本次计算数据 梯度清零
- optimizer.zero_grad()
- # 反向传播
- loss.backward()
- # 更新参数
- optimizer.step()
- print(epoch, loss.item())
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。